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$ whoami

• Alexandros-Panayiotis Natsios

• IRC Handle: Drakevr

• cs undergrad student @ teilar.gr

• openSUSE Advocate
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What is openQA?
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openQA

• Open Source distribution testing framework

• Can test applications or whole operating systems

• In either GUI or console mode

• was started in 2009

• Is now used by major distributions like openSUSE, SUSE, Fedora
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openQA is an integral part of the
development and lifecycle of the

distribution
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full test cycle
(pre-validation,validation,

post-validation)
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pre-validation

• Incoming changes are “staged” and tested on top of the last good
build

• Monitored very regularly

• No submissions are checked in until all openQA tests pass
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validation

• In depth validation is done in parallel for every build

• More than 100 validation scenarios tested

• Improved performance and coverage compared to just testing
manually
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post-validation

• Additional tests can be scheduled automatically after validation
passes

• Builds automatically produce verified valid disk images for further
testing
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Features

• Uses QEMU to fire up Virtual Machine Images

• It can capture images and act on their contents

• It uses libopenCV for fuzzy image matching

• Can generate keystrokes (lke a normal user)

• It is mostly written in Perl

• As are the tests

• Rulefiles are written in JSON

• Licensed under GPLv2
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New Feature Highlights

• Multi Arch Support (Intel, ppc64le, s390x, aarch64)

• Multi Machine Testing (incl. openvswitch)

• Add On Testing

• Remote Workers

• Real Hardware Testing

• Disk Image Creation

• Testing without Installation

• Dashboard & Comments

11 of 42



Basic Consepts
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Jobs
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Jobs

One of the most important features of openQA is that it can be used
to test several combinations of actions and configurations.
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Jobs

For every one of those combinations, the system creates a virtual
machine, performs certain steps and returns an overall result.
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Jobs

Every one of those executions is called a job. Every job is labeled with
a numeric identifier and has several associated settings that will drive
its behavior.
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Jobs

A job goes through several states:

• scheduled Initial state for recently created jobs.
(Queued for future execution.)

• running Jobs in progress.

• cancelled Jobs that have been cancelled by a user or cloned

• waiting The job is in interactive mode and waiting for input

• done Finished Jobs
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Jobs

Jobs in state done have typically gone through a whole sequence of
steps (called testmodules) each one with its own result.
But in addition to those partial results, a finished job also provides an
overall result from the following list.
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• none For jobs that have not reached the “done” state.

• passed No critical check failed during the process.

• failed At least one assertion considered to be critical was not
satisfied at some point.

• incomplete The job is no longer running but no result was
provided. Either it was cancelled while running or it crashed.
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Exceptions

Sometimes, the reason of a failure is not an error in the tested
operating system itself.

• Can be an outdated test

• A problem in the execution of the job

• Other external reason
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Recovery

It makes sense to re-run a given job from the beginning once the
problem is fixed or the tests have been updated.
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Cloning

Every job can be superseded by a clone which is scheduled to run
with exactly the same settings as the original job.
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Recovery

If the original job is still NOT in done state, then it is immediately
cancelled and replaced by the clone.
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Recovery

The original job is still retained in the listing as is all the gathered
information and results (for future ref and examination since its now
considered outdated).
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Needles
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Needles

One of the main mechanisms for openQA to know the state of the
virtual machine is checking the presence of some elements in the
machine’s ‘screen’.
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Needles

A needle specifies both the elements to search for and a list of tags
used to decide which needles should be used at any moment.
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Needles

This is performed using fuzzy image matching between the screen and
the so called needles.
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Needle example

A needle consists of a full screenshot in PNG format and a json file
with the same name (e.g. foo.png and foo.json) containing the
associated data, like which areas inside the full screenshot are relevant
or the mentioned list of tags.
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Needle example

{

"area" : [

{

"xpos" : INTEGER,

"ypos" : INTEGER,

"width" : INTEGER,

"height" : INTEGER,

"type" : ( "match" | "ocr" | "exclude" ),

"match" : INTEGER, // 0-100. similarity percentage

},

...

],

"tags" : [

STRING, ...

]

}
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Xterm Example
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Xterm Example

{

"tags": [

"xterm-in-yast"

],

"area": [

{

"xpos": 5,

"ypos": 22,

"width": 434,

"height": 263,

"type": "match"

}

]

}
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Interactive Mode
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Interactive Mode

There are several points in time during the execution of a job at
which openQA tries to match the screen with the available needles,
reacting to the result of that check.
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Interactive Mode

If the job is running in interactive mode it will stop the execution at
that point, freezing the virtual machine and waiting for user input
before proceeding.
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Interactive Mode

At that moment, the user can modify the existing needles or can
create a new one using as a starting point either the current screen of
the virtual machine or one of the existing needles.
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Interactive Mode

Once the needles are adjusted, the user can command the job to
reload the list of needles and continue with the execution.
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Interactive Mode

The interactive mode is especially useful when creating needles for a
new operating system or when the look & feel have changed and
several needles need to be adjusted accordingly.

38 of 42



Architecture
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Links

• https://openqa.opensuse.org/ [Homepage]

• http://en.opensuse.org/openSUSE:OpenQA [Wiki Portal]

• https://github.com/os-autoinst/os-autoinst [Framework Source]

• https://github.com/os-autoinst/openQA [Web Interface]

41 of 42



Q & A
Thank you for your attention!

Alex-P. Natsios

drakevr@2f30.org

http://drakevr.gr

http://www.linkedin.com/in/drakevr

http://www.github.com/drakevr

http://www.facebook.com/drakevr

http://www.twitter.com/drakevr

42 of 42

drakevr@2f30.org
http://drakevr.gr
http://www.linkedin.com/in/drakevr
http://www.github.com/drakevr
http://www.facebook.com/drakevr
http://www.twitter.com/drakevr

