
Cryptographic protocol analysis–
A short introduction to the Scyther tool

P. Kotzanikolaou

Presentation at FOSSCOMM 2016 – University of Piraeus

17 April 2016

1 / 24

Outline

1 Introduction to Cryptographic protocols

2 State spaces in security protocol analysis

3 Scyther: A short introduction

2 / 24

Content

1 Introduction to Cryptographic protocols

2 State spaces in security protocol analysis

3 Scyther: A short introduction

3 / 24

What is a Cryptographic protocol?

Cryptographic protocol: A formal definition of actions
(computations) and message exchanges (communications)
between some entities, in order to achieve some claimed
security properties.
Example of claimed security properties:

entity authentication
key agreement
aliveness, etc.

Crypto protocols usually combine other cryptographic
primitives (e.g. encryption schemes, signature schemes etc).

3 / 24

Example: The Needham-Schroeder (N-S) protocols

Two protocols by N-S.
The Symmetric-Key N-S Protocol:

Entities: Two users (Alice, Bob) and a trusted authentication
server Auth.
Uses symmetric keys shared between each user and Auth
(Ka, Kb).
Protocol Goal (claimed security property): establish a fresh
session key between two parties (Kab) over an insecure
network. The session key is secret from all others.

The Public-Key N-S Protocol:
Entities: Two users (Alice, Bob) and a trusted authentication
server (Auth).
Uses a public-key pair for each entity
((PKa, SKa), (PKb, SKb), (PKAuth, SKAuth)).
Protocol Goal (claimed security property): establish a secret
session key between two parties (Kab) over an insecure
network.

4 / 24

N-S symmetric protocol: Description

Figure: Graphical example of Needham Schroeder protocol

5 / 24

What is Wrong with N-S?

Crypto protocols are error-prone. Crypto protocols require
formal security analysis.
The N-S protocol was found flawed using an automatic tool
(Casper/FDR) 17 years later !
Vulnerable to replay attack: Attacker uses older,
compromised value for Kab and then replays {Kab, A}Kb

to
Bob, who is unable to tell that the key is not fresh.
Flaw was not detected in the original proof due to different
assumptions on the intruder model.

6 / 24

Using Tools for Crypto Protocol Analysis

Automatic tools based on formal analysis have been
presented in the literature.
Main problem: Security in cryptographic protocols is
undecidable.
Tools address undecidability in different ways:

By restricting the protocol behaviors explored using roles.
By using abstraction methods.

7 / 24

Content

1 Introduction to Cryptographic protocols

2 State spaces in security protocol analysis

3 Scyther: A short introduction

8 / 24

Symbolic analysis
Symbolic analysis models:

Possible behavior of legitimate agents executing a security
protocol.
Possible behavior of active intruders.

A security protocol is defined as a finite set of
communicating processes, referred to as "roles".

Roles names can be Client/Server or Initiator/Responder.
Protocols define exchange of message terms between roles.

Figure: Roles and Terms in N-S example

8 / 24

Symbolic analysis
A protocol specifies the behavior of a number of roles.

A mapping from role names to processes.
A role consists of a sequence of send and receive events.

Process P defines a possibly infinite number of behaviors.
Each behavior is represented as sequences of events.
A sequence of events is referred to as a trace of the system.
All behaviors of a process P denoted by set of traces tr(P).

Figure: Roles and Terms in N-S example

9 / 24

Symbolic analysis

Roles are executed by Agents.
Each role can be executed any number of times by
unbounded number of agents.

Protocol Q with |dom(Q)| = n roles, dom(Q) = r1, r2, ..., rn

Q(r)(a1, ..., an) the process that is the instantiation of the role
r, where r1 is substituted by a1 etc.

For any protocol Q, the behavior of the agents is defined by
the process:

∥x∈dom(Q)!Q(x)(_, ..., _)

10 / 24

Symbolic analysis

Notation _, interpreted as the unspecified choice.
Q(Resp)(_, _) denotes a single execution of the responder
role, with any choice for the agent names.

X ∥ Y denotes the process consisting of the parallel
composition of the process X and Y .
!X denotes the replication of the process X, i.e.
!X = X ∥ (!X).

11 / 24

Cryptographic protocol analysis

Verifying security properties of protocols ≈ checking whether
all possible behaviors satisfy desired security properties.
Given a protocol Q, the system describing the behavior of the
agents in the context of the intruder is defined as:

Sys(Q) = Intruder ∥∥x∈dom(Q)!Q(x)(_, ..., _)

If there exists an attack on (a trace property of) a protocol Q,
it is represented in the set of traces of the system Sys(Q).
If no trace in tr(Sys(Q)) exhibits an attack, there is no
attack on the protocol.

12 / 24

Cryptographic protocol analysis

Crypto protocol analysis tools usually apply some
restrictions.

Do not explore all elements from the set tr(Sys(Q)).
Protocols are not actually verified in the full system Sys but
rather in a subset of the behaviors.
Subsets can be defined by using a Scenario.

A Scenario is a multi-set of processes.
S: the set of all possible scenarios
Sc: the subset of concrete scenarios in which no unspecified
agents (_) occur.

13 / 24

State spaces in security protocol analysis

Sys(Q) contains any number of replications of each role
MaxRuns(Q, m) system contains only a finite number of
replications of each role.
Let Q be a protocol and let m be an non-negative integer.
Then:

MaxRuns(Q, m) = Intruder ∥∥m
i=1 (

∑
x∈dom(Q) Q(x)(_, .., _))

14 / 24

State spaces in security protocol analysis: Example

Using a single honest agent a and single compromised
agent e, for a protocol with roles r1, r2, tr(MaxRuns(Q, 1))
is equal to:

(∪k∈a,etr(Scen(r1(a, k)))) ∪ (∪k∈a,etr(Scen(r2(k, a))))

This yields a set of four scenarios.

15 / 24

Practical implications

Two possible results of state space analysis:
1 Finding attacks on a protocol

If an attack is found, unexplored parts are of little interest.
2 No attack was found.

If no attack is found, then we only have some assurance of
the correctness of the protocol.
State space choices have great impact on analysis results.
Scenarios that do not cover all possibilities may result to
erroneous output.
Even for two honest agents, the simplest protocols already
need 42 concrete scenarios to explore exactly all attacks
involving two runs.

16 / 24

Tools for automated analysis of security protocols

Most tools are free and open source. Some examples are:
Avispa (Automated Validation of Internet Security Protocols)
ProVerif
Casper/FDR
Scyther

17 / 24

Content

1 Introduction to Cryptographic protocols

2 State spaces in security protocol analysis

3 Scyther: A short introduction

18 / 24

Scyther tool

Tool by Cas Cremers for the automatic verification of security
protocols.
Can be found at:
http://users.ox.ac.uk/~coml0529/scyther/
Python based. Current version is 1.1.3.
Available for various platforms (Linux, Windows, Mac OS).
Installation instruction are included in the downloadable
Scyther archives.

18 / 24

http://users.ox.ac.uk/~coml0529/scyther/

...Scyther tool

Verifies protocols with unbounded number of sessions.
Can characterize protocols, yielding a finite representation of
all possible protocol behaviors.
Not required to provide scenarios for property verification, all
possible protocol behaviors are explored by default.
Core elements in a Scyther input file are protocol definitions.
Has been used to:

analyse IKEv1, IKEv2 protocol suites and ISO/IEC 9798
family along with a large amount of Authenticated Key
Exchange (AKE) protocols.
find new multi-protocol attacks on many existing protocols.

19 / 24

Scyther tool - Variables and values

Scyther manipulates terms.
Atomic terms can be any identifier, usually string of
alphanumeric characters.

Constants
Freshly generated values: random values, declared inside
roles using the fresh declaration.
Variables: Agents can use variables to store received terms.

Atomic terms can be combined into complex terms.
(x,y) : pair of terms x and y.
It is allowed to write n-tuples.

20 / 24

Scyther tool - Encryption

Any term can act as a key for symmetrical encryption.
Encryption of ni with a term kir is written as: { ni }kir

Unless kir explicitly defined as part of asymmetric key pair,
this is interpreted as symmetric encryption.

Symmetric-key infrastructure predefined: k(X, Y) denotes
long-term symmetric key shared between X and Y.
Public-key infrastructure (PKI) is predefined: sk(X)
denotes the long-term private key of X and pk(X) the
corresponding public key.
Example: Nonce of the initiator (ni) encrypted with initiator
public key: { ni }pk(I)

21 / 24

Scyther tool - Events

recv and send: Receiving and sending a message, respectively.
Each send event will have a corresponding recv event.
Claim events: Used in role specifications to model intended
security properties.

Secret: This claim requires secrecy for a given parameter term.
SKR: Equivalent to the Secret claim. Additionally mark the
parameter term as a session-key. Consequence is that using
session-key reveal adversary rule will now reveal the parameter
term.
Alive: Aliveness (of all roles).
Weakagree: Weak agreement (of all roles).

Example: Claim event models that Ni is meant to be secret.
claim(I, Secret, Ni);

22 / 24

Demo time

We will explore two examples (both included in the protocol
examples of the Scyther tool):

The symmetric-key N-S protocol.
The public-key version of the N-S protocol.

23 / 24

References

Cremers, Cas JF, Pascal Lafourcade, and Philippe Nadeau.
"Comparing State Spaces in Automatic Security Protocol
Analysis." Formal to Practical Security 5458 (2009): 70-94.
Cremers, C. J. F. Scyther: Unbounded Verification of Security
Protocols. ETH, Department of Computer Science, 2007.

24 / 24

	Introduction to Cryptographic protocols
	State spaces in security protocol analysis
	Scyther: A short introduction

